274
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Geometric methods for microstructure rendition and atomic characterization of poly- and nano-crystalline materials

&
Pages 2191-2222 | Received 30 Jun 2009, Accepted 14 Jan 2010, Published online: 12 May 2010
 

Abstract

Polycrystalline materials of both coarse-grain and nanometer scales have complex topological structures with multi-dimensions, including vertices (zero dimension), triple junction lines (one dimension), interfaces or grain boundaries (two dimensions), and grain volumes (three dimensions). Collectively, they contribute to the properties that make these materials valuable for many applications. However, for both numerical modeling and theoretical analysis, connecting the microstructures quantitatively with the properties remains a challenge, due simply to their complexity and also limitations in direct probing of the microstructures at atomic scales in experiments. Without an accurate description of the microstructures, it is difficult, if not impossible, to determine quantitatively the factors and parameters of microstructures and their contributions to the properties. In this study, we present systematic methods, using a series of geometric constructions, to render microstructures in the polycrystalline materials and their characterization at atomic scales. We tested the methods in nanocrystalline (nc) copper using molecular dynamics simulation, as it is the only polycrystalline sample that could be handled at atomic scale. We present the first set of results of atomic scale characterization of the microstructure attributes, grain boundary profile, effects of misorientation, grain size and temperature on grain boundaries, and discuss further applications of the methods.

Acknowledgement

The authors are grateful for the financial support for this work provided by an NERI-C grant under the contract number DEFG07-14891.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.