217
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Homogenization of multicoated inclusion-reinforced linear elastic composites with eigenstrains: Application to thermoelastic behavior

&
Pages 3003-3026 | Received 07 Apr 2009, Accepted 06 Mar 2010, Published online: 09 Jun 2010
 

Abstract

A new micromechanical approach for arbitrary multicoated ellipsoidal elastic inclusions with general eigenstrains is developed. We start from the integral equation of the linear elastic medium with eigenstrains adopting the Green's function technique and we apply an ‘(n+1)-phase’ model with a self-consistent condition to determine the homogenized behavior of multicoated inclusion-reinforced composites. The effective elastic moduli and eigenstrains are obtained as well as the residual stresses through the local stress concentration equations. The effective eigenstrains are determined either with the concentration tensors obtained here by the present model, or, more classically, with Levin's formula. In order to assess our micromechanical model, some applications to the isotropic thermoelastic behavior of composites with and without interphase are given. In particular, ‘four-phase’ and ‘three-phase’ models are derived for isotropic homothetic spherical inclusion-reinforced materials, and the results are successfully compared to exact analytical solutions regarding the effective elastic moduli and the effective thermal expansion.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.