546
Views
30
CrossRef citations to date
0
Altmetric
Fracture size effects

Smaller is tougher

, , , , , & show all
Pages 1179-1189 | Received 19 Nov 2009, Accepted 15 Apr 2010, Published online: 25 Jun 2010
 

Abstract

“Smaller is stronger” is now a tenet generally consistent with the predominance of evidence. An equally accepted tenet is that fracture toughness almost always decreases with increasing yield strength. Can “smaller is tougher” then be consistent with these two tenets? It is taught in undergraduate engineering courses that one design parameter that allows for both increased strength and fracture toughness is reduced grain size. The present study on the very brittle semiconductor silicon proves this exception to the rule and demonstrates that smaller can be both stronger and tougher. Three nanostructures are considered theoretically and experimentally: thin films, nanospheres, and nanopillars. Using a simple work per unit fracture area approach, it is shown at small scale that toughness is inversely proportional to the square root of size. This is supported by experimental evidence from in situ electron microscopy nanoindentation at length scales of less than a micron. It is further suggested that dislocation shielding can explain both strength and toughness increases at the small scales.

Acknowledgements

This work was supported by the National Science Foundation (CTS-0506748), the Air Force Office of Scientific Research (AOARD-08-4134), and the Abu Dhabi–Minnesota Institute for Research Excellence (ADMIRE), a partnership between the Petroleum Institute (PI) of Abu Dhabi and the Department of Chemical Engineering and Materials Science of the University of Minnesota. Parts of this work were carried out in the Institute of Technology Characterization Facility, University of Minnesota, a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.