633
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Dislocation and defect density-based micromechanical modeling of the mechanical behavior of fcc metals under neutron irradiation

, &
Pages 4013-4025 | Received 29 Mar 2010, Accepted 12 Jun 2010, Published online: 10 Aug 2010
 

Abstract

A rate-independent dislocation and defect density-based evolution model is presented that captures the pre- and post-yield material behavior of fcc metals subjected to different doses of neutron radiation. Unlike previously developed phenomenological models, this model is capable of capturing the salient features of irradiation-induced hardening, including increase in yield stress followed by yield drop and non-zero stress offset from the unirradiated stress–strain curve. The key contribution is a model for the critical resolved slip resistance that depends on both dislocation and defect densities, which are governed by evolution equations based on physical observations. The result is an orientation-dependent non-homogeneous deformation model, which accounts for defect annihilation on active slip planes. Results for both single and polycrystalline simulations of OFHC copper are presented and are observed to be in reasonably good agreement with experimental data. Extension of the model to other fcc metals is straightforward and is currently being developed for bcc metals.

View correction statement:
Corrigendum

Acknowledgements

The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # BRBAA08-C-2-0130.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.