210
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Rapid synthesis and densification of single-phase Al–Cu–Fe quasicrystals by spark plasma sintering or microwave heating

, , , &
Pages 2450-2457 | Received 30 May 2010, Accepted 20 Jul 2010, Published online: 20 Sep 2010
 

Abstract

Quasicrystalline (QC) phases are often stable only within narrow composition domains. For this reason, the synthesis of larger amounts of single-phase quasicrystalline powders is difficult. Powder metallurgical approaches, based on mechanical milling followed by conventional heating, have been explored in the recent past. The manufacturing process for single-phase quasicrystals – either in the form of powders or as bulk parts – can be accelerated by orders of magnitude using rapid heating methods that involve pulsed electric currents and/or high-frequency electromagnetic fields. Prior knowledge of the phase transformation sequence and transformation kinetics, as revealed by in situ time-resolved synchrotron radiation experiments, is crucial in obtaining single-phase quasicrystals. We report on the simultaneous synthesis and densification of bulk single-phase Al–Cu–Fe QCs by spark plasma sintering (SPS) within minutes and on the ultrafast synthesis of single-phase Al–Cu–Fe quasicrystalline powders by microwave heating within seconds. The effect of electric current application in the rapid processing of pre-alloyed powders is discussed in relation to the faster diffusion and enhanced phase transformation kinetics.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.