219
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Solidification of tin on quasicrystalline surfaces

, , &
Pages 1106-1128 | Received 21 Apr 2011, Accepted 02 Nov 2011, Published online: 12 Dec 2011
 

Abstract

A two-phase alloy of β-Sn and Al63Cu25Fe12 quasicrystal produced by melt-spinning was annealed and aged to form various microstructures of tin in a quasicrystalline (QC) or microcrystalline (MC) matrix. The morphology and structure of the interfaces was studied by scanning and transmission electron microscopy and was related to melting and solidification behavior of tin studied by differential scanning calorimetry. In a MC matrix the tin phase occurred as nanoparticles and solidified with an undercooling of about 35°C. In a QC matrix, tin formed intergranular layers on faceted matrix grains. Tin showed multiple solidification peaks in undercooling ranging from 8°C to 43°C, indicating several distinct nucleation sites which compete with each other and are selected kinetically. The interfacial energy (depending on the structural state of the matrix) had a more dominating effect on the solidification of tin than the size, shape and the distribution of the tin particles. It was also concluded that solidification of tin is easier on quasicrystalline surfaces than on aluminum.

Acknowledgements

This work is supported by Japan Society for Promotion of Science under grant Kakenhi 19560671 (AS) and 19540382 and 21540330 (YM).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.