315
Views
15
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials

, , , , , , , & show all
Pages 1261-1286 | Received 07 Jul 2011, Accepted 18 Nov 2011, Published online: 24 Jan 2012
 

Abstract

During waste heat recovery applications, thermoelectric (TE) materials experience thermal gradients and thermal transients, which produce stresses that scale with the TE material's coefficient of thermal expansion (CTE). Thus, the temperature-dependent CTE is an important parameter for the design of mechanically robust TE generators. For three skutterudite thermoelectric compositions, n-type Co0.95Pd0.05Te0.05Sb3 (with and without 0.1 at. % cerium doping) and p-type Ce0.9Fe3.5Co0.5Sb12, the CTE was measured using two methods, i.e. X-ray diffraction on powder and bulk specimens and dilatometry on bulk specimens. Each bulk specimen was hot pressed using powders milled from cast ingots. Between 300 K and 600 K, the mean CTE values were 9.8–10.3 × 10−6 K−1 for the non-cerium-doped n-type, 11.6 × 10−6 K−1 for the 0.1 at. % cerium-doped n-type and from 12.7 to 13.3 × 10−6 K−1 for the p-type. In the literature, similar CTE values are reported for other Sb-based skutterudites. For temperatures >600 K, an unrecovered dilatational strain (perhaps due to bloating) was observed, which may impact applications. Also, the submicron particle sizes generated by wet milling were pyrophoric; thus, during both processing and characterization, exposure of the powders to oxygen should be limited.

Acknowledgements

Work performed after September 2010, a part of the “Revolutionary Materials for Solid State Energy Conversion Center,” an Energy Frontiers Research Center, was funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001054. Research prior to August 2010 was supported by via US Department of Energy Grant DE-FC26-04NT42281. CTE and XRD measurements were conducted through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program, sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.