167
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles study of the effect of iron on the crystal structure, stability and chemical bonding in the β-based AlCu ordered η2-phase and the pretransition state of a solid solution

&
Pages 1649-1662 | Received 24 Jun 2011, Accepted 21 Dec 2011, Published online: 31 Jan 2012
 

Abstract

First-principles calculations showed that the thermodynamic stability of β-based ordered η2-AlCu phase doped with Fe is due to iron substitution in the copper sublattice (FeCu), which corresponds to the maximum number of Fe–Al bonds in the first cubic coordination polyhedron. This iron localisation leads to stable ω-like atomic displacements and pentagonal Al-nets in the (010) plane of η2-AlCu(Fe). This phase with iron substituting copper (e/a = 1.925) is an energetically preferred η-based non-canonical approximant of the icosahedral phase (e/a = 1.86). The energy gain for the FeCu position is determined by strong covalent Fe3d–Al3p bonding, while there is a weak Fe3d–Cu4s3d hybridisation for the FeAl substitution. Using a composite cluster model, we demonstrate that short-range order in the pretransition state of the β-Al–Cu–Fe solid solution observed prior to the precipitation of η-phase is stabilised due to formation of Fe–Al bonds in the first cubic coordination polyhedron of the composite cluster.

Acknowledgements

This work was supported by an RFBR grant (010-02-00602).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.