152
Views
16
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The influence of Si on the microstructure and sintering behavior of ultrafine WC

, &
Pages 3950-3967 | Received 29 Jul 2011, Accepted 09 May 2012, Published online: 10 Jul 2012
 

Abstract

The microstructure of sintered nanoscale tungsten carbide powders with 1 wt % Si addition was found to be populated by an abnormally large number of elongated grains. Interrupted sintering experiments were conducted to clarify the origins of the excessive abnormal grain growth seen in the microstructure. It was observed that rapid coarsening occurred at high temperatures owing to the formation of a liquid phase. However, the grain shape evolution during this coarsening period was found to be a consequence of excessive stacking faults and micro twins on the basal planes probably generated by reaction of WC with Si. Analyses of the microstructures and the isothermal and non isothermal coarsening behaviors suggested that the platelet morphology evolved by defect-assisted nucleation and growth on faceted grains. Based on experimental evidence from samples interrupted at low temperatures and crystal growth theories, we discuss the possible mechanisms that eventually led to the rampant platelet-type morphology. Further, the influence of such rapid grain growth on the shrinkage rate during sintering is also discussed. In comparison with the cyclic coarsening-densification process of sintering in pure nanoscale WC, the addition of Si leads to only two distinct sintering stages: either densification dominated or coarsening dominated. Concurrent densification and coarsening cannot be sustained particularly in the presence of a liquid phase that significantly enhances coarsening.

Acknowledgements

One of the authors, AKNK wishes to record his deep sense of gratitude to Prof. Kurokawa, for his constant encouragement and help during the course of this work. Profs. N. Sakaguchi and A. Yamauchi are also gratefully acknowledged for many useful discussions. The anonymous reviewer is also thanked for pointing out certain valuable references that have been included in this text.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.