185
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Orientation of shear bands for a rigid plastic frictional material in simple shear

, , &
Pages 3564-3588 | Received 01 Dec 2011, Accepted 07 Jun 2012, Published online: 07 Aug 2012
 

Abstract

The orientation of shear bands is investigated analytically and numerically for a rigid plastic frictional material in simple shear. The model is based on co-axial flow rule, incompressible deformations and a friction factor which depends on the strain history. Since we are focussing on geological timescales, the influence of elasticity is neglected. Firstly, a linear stability analysis is performed confirming Rice's 1976 assertion [The localization of plastic deformation, in Proceedings of the 14th International Congress on Theoretical and Applied Mechanics, W.T. Koiter, ed., North Holland, Amsterdam, 1976, p.207] that, in the hardening regime, bifurcation is possible at every stage. Orientation of shear bands against the less compressive principal axis lies anywhere between the Roscoe and Coulomb angles, namely between π/4+ψ/2 and π/4 + ϕ/2, where ϕ and ψ are the mobilised angles of friction and dilatancy, respectively (in our study, we assume ψ = 0). The linear stability analysis leaves open the question of which orientation will actually emerge in a boundary value problem that consider all nonlinearities. This question is addressed in a finite element study of simple shear with periodic boundary conditions in the shear direction. Our simulations show temporary inclined shear bands in the hardening regime followed by a persistent horizontal shear band. A sensitivity study with respect to geometric and constitutive parameters indicates that the height of the sample controls the orientation of the inclined shear bands. Finally, we extend our analytical and numerical studies to Cosserat plasticity. It turns out that inclined shear bands are suppressed for large values of the internal length R (narrow bands). The case of a standard continuum is gradually recovered for small R (wide bands).

Acknowledgements

We would like to acknowledge support from the ARC Discovery Grant DP0985662 and the ongoing support through Auscope/NCRIS. We are also grateful to Cihan Altinay, Joel Fenwick, Lin Gao and Vince Boros of ESSCC at the University of Queensland for their help during the preparation of the manuscript.

Notes

Note

1. Elastic and plastic strain rates do not share the same principal axes whereas viscous and plastic strain rates do.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.