406
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study of structural evolution in shear band

, &
Pages 3501-3519 | Received 30 Nov 2011, Accepted 19 Jul 2012, Published online: 20 Aug 2012
 

Abstract

At elevated stress levels, the deformation of granular assemblies has the tendency to localize in narrow shear bands. Recent research efforts within the granular material community are focusing on the morphology of deformation patterns within the bands. Understanding of the deformation mechanisms is a prerequisite for the quantification of energy dissipation, hardening and softening in the post-localization range. Despite significant experimental research efforts, a clear understanding of the flow properties and constitutive behaviours within the shear band is still elusive. This could mainly be attributed to the fact that shear bands are thin objects, making a detailed characterization of the particles’ behaviour and their interactions within shear bands difficult. As a numerical method, the Discrete Element Method (DEM) has demonstrated its ability to address this problem, owing to its intrinsic characteristic of tracing particle behaviour. This paper presents the results of application of DEM to model two-dimensional, densely packed, cohesionless, polydisperse granular assemblies under simple shear. Meso-scale kinematical information such as displacement field is evaluated. Within the shear band, the deformation field displays a vortex-like structure, and such vortex structures are accompanied by strong pore space production within the shear band. Analysis of the history of force chains inside the localized shear zone reveals that the formation of vortex structures is related to the kinematical evolution of a cycle encompassing buildup, buckling and collapse of the force chains.

Acknowledgements

We acknowledge support from the ARC Discovery Grant DP0985662 and the onging support through Auscope/NCRIS. The authors are also grateful to Vince Boros, Joel Fenwick and Yaron Finzi of ESSCC at the University of Queensland for their help during the preparation of the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.