401
Views
16
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles study in Fe grain boundary with Al segregation: variation in electronic structures with straining

&
Pages 635-647 | Received 26 Sep 2011, Accepted 30 Aug 2012, Published online: 21 Sep 2012
 

Abstract

First-principles fully relaxed tensile tests were performed on a Σ3 (111)/[10] tilt Fe grain boundary (GB) segregated with Al. The effects of Al segregation on bond breaking in the GB were compared with those of Cu and P, which are typical GB embrittlers because of charge transfer and covalent-like characteristics, respectively. It was suggested by first-principles tensile tests that the intergranular embrittling potency of Al is as strong as that of Cu. However, this result disagreed with an estimation based on the Rice–Wang thermodynamic model. The first bond breaking site in the Al-segregated GB was the Fe-Fe bond neighbouring the Al atom, as in the Cu-segregated GB. This is typical of bond breaking due to charge transfer. However, no charge transfer was observed from the Fe atom to the Al atom, while the Fe atom neighbouring the Al atom showed covalent-like characteristics. It was suggested from investigations of the charge density at the bond critical point that the effect of covalent-like characteristics of Al on the Fe-Fe bond was small in the initial stage of straining, but it increased as the charge density of the Fe-Fe bond decreased with increasing strain. The investigation of the dynamic change in electronic structure also shed light on the difference of bond breaking behaviour in metallic and covalent-like bonding in metallic materials.

Acknowledgements

This work was supported by a Grant-in-Aid for JSPS Fellows (22 5568). Computation time was provided by the SuperComputer Laboratory, Institute for Chemical Research, Kyoto University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.