224
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Molecular dynamics simulation of twinning in devitrite, Na2Ca3Si6O16

&
Pages 1582-1603 | Received 08 Oct 2012, Accepted 07 Nov 2012, Published online: 06 Feb 2013
 

Abstract

Reports of Type II twins are quite rare for most crystal structures. When they do occur, they are usually one of a number of possible twinning modes observed in a particular material. However, for the triclinic phase devitrite, Na2Ca3Si6O16, which nucleates from commercial soda−lime−silica float glass subjected to suitable heat treatments, the only reported twinning mode to date is a Type II twinning mode. In this study, this Type II twinning mode is first examined by molecular dynamics simulation to determine the lowest energy configuration of perfect twin boundaries for the twin mode. This is then compared with the lowest energy configurations of perfect twin boundaries found for six possible Type I twinning modes for devitrite for which the formal deformation twinning shear is less than 0.6. The most favourable twin plane configuration for the Type II twinning crystallography is shown to produce reasonably low twin boundary energies and sensible predictions for the optimum locations of the twin plane, K 1, and the [1 0 0] rotation axis, η 1, about which the 180° Type II twinning operation takes place. By comparison, all the Type I twinning modes were found to have very energetically unstable atomic configurations, and for each of these twinning modes, the lowest energy configurations found all led to high effective K 1 twin boundary energies relative to perfect crystal. These results therefore provide a rationale for the experimental observation of the particular Type II twinning mode seen in devitrite.

Acknowledgements

We would like to thank the National University of Defense Technology at Changsha in China for the award of an overseas Academic Visitor scholarship to Dr Li during the course of this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.