517
Views
23
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms

&
Pages 152-173 | Received 18 Jan 2013, Accepted 19 Sep 2013, Published online: 18 Oct 2013
 

Abstract

This work presents the results of a comparative molecular dynamics study showing that relaxed random grain boundary structures can be significantly non-planar at the nano-scale in fcc metals characterized by low stacking fault values. We studied the relaxed structures of random [1 1 0] tilt boundaries in a polycrystal using interatomic potentials describing Cu and Pd. Grain boundaries presenting non-planar features were observed predominantly for the Cu potential but not for the Pd potential, and we relate these differences to the stacking fault values. We also show that these non-planar structures can have a strong influence on dislocation emission from the grain boundaries as well as on grain boundary strain accommodation processes, such as grain boundary sliding. We studied the loading response in polycrystals of 40 nm grain size to a level of 9% strain and found that the non-planar grain boundaries favour dislocation emission as a deformation mechanism and hinder grain boundary sliding. This has strong implications for the mechanical behaviour of nano-crystalline materials, which is determined by the competition between dislocation activity and grain boundary accommodation of the strain. Thus, the two interatomic potentials for Cu and Pd considered in this work resulted in the same overall stress–strain curve, but significantly different fractions of the strain accommodated by the intergranular versus intragranular deformation mechanisms. Strain localization patterns are also influenced by the non-planarity of the grain boundary structures.

Acknowledgements

This work was supported by the Department of Energy, Office of Basic Energy Sciences, under grant DE-FG02-08ER46525 and the National Science Foundation, IRD program. The authors acknowledge Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the results reported within this paper. URL: http://www.arc.vt.edu

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.