528
Views
25
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A study of the hot and cold deformation of twin-roll cast magnesium alloy AZ31

, , , , &
Pages 381-403 | Received 05 Apr 2013, Accepted 13 Sep 2013, Published online: 29 Oct 2013
 

Abstract

Recent advances in twin-roll casting (TRC) technology of magnesium have demonstrated the feasibility of producing magnesium sheets in the range of widths needed for automotive applications. However, challenges in the areas of manufacturing, material processing and modelling need to be resolved in order to fully utilize magnesium alloys. Despite the limited formability of magnesium alloys at room temperature due to their hexagonal close-packed crystalline structure, studies have shown that the formability of magnesium alloys can be significantly improved by processing the material at elevated temperatures and by modifying their microstructure to increase ductility. Such improvements can potentially be achieved by processes such as superplastic forming along with manufacturing techniques such as TRC. In this work, we investigate the superplastic behaviour of twin-roll cast AZ31 through mechanical testing, microstructure characterization and computational modelling. Validated by the experimental results, a novel continuum dislocation dynamics-based constitutive model is developed and coupled with viscoplastic self-consistent model to simulate the deformation behaviour. The model integrates the main microstructural features such as dislocation densities, grain shape and grain orientations within a self-consistent viscoplasticity theory with internal variables. Simulations of the deformation process at room temperature show large activity of the basal and prismatic systems at the early stages of deformation and increasing activity of pyramidal systems due to twinning at the later stages. The predicted texture at room temperature is consistent with the experimental results. Using appropriate model parameters at high temperatures, the stress–strain relationship can be described accurately over the range of low strain rates.

Acknowledgement

This publication was made possible by a National Priorities Research Program grant from the Qatar National Research Fund (a member of The Qatar Foundation), Grant No. NPRP 09-611-2-236. The statements made herein are solely the responsibility of the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.