221
Views
24
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Surface/interface effects on the formation of misfit dislocation in a core–shell nanowire

, &
Pages 492-519 | Received 04 Mar 2013, Accepted 11 Oct 2013, Published online: 08 Nov 2013
 

Abstract

The misfit strain within the core of a two-phase free-standing core–shell nanowire resulting in the generation of an edge misfit dislocation or an edge misfit dislocation dipole at the core–shell interface is considered theoretically within both the classical and surface/interface elasticity approaches. The critical conditions for the misfit dislocation generation are studied and discussed in detail with special attention to the non-classical surface/interface effect. It is shown that this effect is significant for fine cores of radius smaller than roughly 20 interatomic distances. The positive and negative surface/interface Lamé constants mostly make the generation of the misfit dislocation easier and harder, respectively. Moreover, the positive (negative) residual surface/interface tensions mostly make the generation of the misfit dislocation harder (easier). The formation of individual misfit dislocation is energetically more preferential in finer two-phase nanowires, while the formation of misfit dislocation dipole is more expectable in the coarser ones.

Acknowledgements

M.Yu.G. appreciates the support of the Russian Foundation of Basic Research (Grant 13-02-00107-a).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.