882
Views
25
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A negative-stiffness phase in elastic composites can produce stable extreme effective dynamic but not static stiffness

&
Pages 532-555 | Received 05 Aug 2013, Accepted 15 Oct 2013, Published online: 13 Nov 2013
 

Abstract

We investigate the effective elastic properties and overall stability of four specific two-phase elastic composite systems having a non-positive-definite phase (often referred to as a negative-stiffness phase) to determine whether or not the presence of the negative-stiffness phase can lead to stable extreme overall stiffness. We start with an instructive spring-mass model to illustrate the underlying physical mechanisms before proceeding to the two- and three-dimensional two-phase solids of coated cylindrical and coated spherical inclusions, and we finally study a general particle-matrix composite. For all examples, we correlate effective stiffness with overall stability to demonstrate that the static effective stiffness measures can never reach extreme values due to the inclusion of a negative-stiffness phase in a stable manner, while dynamic loading indeed permits resonance-induced extreme effective stiffness.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.