368
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Spinodal twinning of a deformed crystal

, &
Pages 888-897 | Received 23 Oct 2013, Accepted 01 Nov 2013, Published online: 27 Jan 2014
 

Abstract

We propose the possibility of a spinodal mechanism for deformation twinning in addition to the nucleation and growth mechanism assumed in all existing studies of twinning, using the thermodynamic stability analysis of a homogeneously deformed crystal by examining its energy landscape as a function of strain along the twinning direction obtained from first-principles calculations. Twinning occurs continuously owing to thermodynamic instability with respect to twinning at large shear strains, whereas it can only take place through the nucleation and growth mechanism at small shear strains.

Acknowledgments

This work was funded by the Center for Computational Materials Design (CCMD), a joint National Science Foundation (NSF) Industry/University Cooperative Research Center at Penn State (IIP-1034965) and Georgia Tech (IIP-1034968) and by the National Science Foundation under the Grant No. DMR-0710483.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.