493
Views
13
CrossRef citations to date
0
Altmetric
Investigating the Mechanisms of Plasticity

Strength of metals under vibrations – dislocation-density-function dynamics simulations

, &
Pages 1845-1865 | Received 04 Nov 2013, Accepted 16 Feb 2014, Published online: 16 Apr 2014
 

Abstract

It is well known that ultrasonic vibration can soften metals, and this phenomenon has been widely exploited in industrial applications concerning metal forming and bonding. Recent experiments show that the simultaneous application of oscillatory stresses from audible to ultrasonic frequency ranges can lead to not only softening but also significant dislocation annihilation and subgrain formation in metal samples from the nano- to macro-size range. These findings indicate that the existing understanding of ultrasound softening – that the vibrations either impose additional stress waves to augment the quasi-static applied load, or cause heating of the metal, whereas the metal’s intrinsic deformation resistance or mechanism remains unaltered – is far from complete. To understand the softening and the associated enhanced subgrain formation and dislocation annihilation, a new simulator based on the dynamics of dislocation-density functions is employed. This new simulator considers the flux, production and annihilation, as well as the Taylor and elastic interactions between dislocation densities. Softening during vibrations as well as enhanced cell formation is predicted. The simulations reveal the main mechanism for subcell formation under oscillatory loadings to be the enhanced elimination of statistically stored dislocations (SSDs) by the oscillatory stress, leaving behind geometrically necessary dislocations with low Schmid factors which then form the subgrain walls. The oscillatory stress helps the depletion of the SSDs, because the chance for them to meet up and annihilate is increased with reversals of dislocation motions. This is the first simulation effort to successfully predict the cell formation phenomenon under vibratory loadings.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.