184
Views
4
CrossRef citations to date
0
Altmetric
Articles

Multiscale rotational mechanism of fracture propagation in geomaterials

, &
Pages 3167-3191 | Received 21 Oct 2014, Accepted 20 Jan 2015, Published online: 29 Apr 2015
 

Abstract

We consider rotational mechanism of macrocrack propagation based on breakage of the bonds between mutually rotating grains. The mechanism is multiscale with the macroscopic scale corresponding to the macrocrack, the next, smaller scale corresponding to the grain rotations and the smallest scale corresponding to the microcracks formed in the bonds whose propagation causes the bond breakage. The bond breakage is initiated by their bending or twisting caused by the corresponding moments. The sign of the moments only affects the side of the bond where the microfracturing starts. The independence of the microfracturing of the sign of the moment stresses provides a unified way of describing such apparently different types of fractures as tensile (Mode I) cracks, compaction bands (Mode I anticracks) and shear bands (Mode II and III). Modelling of this mechanism is based on the Cosserat theory. The bending/twisting moments are controlled by the corresponding components of moment stress. In the cases, when the Cosserat characteristic lengths are comparable with the grain sizes, the Cosserat theory is reduced to the couple-stress theory. It is found that the stress exhibits the square root singularity that coincides with the conventional ones, while the moment stress has singularity of the power −3/2. The J-integral, however, reflects only stress singularities, while the moment stress singularities do not contribute to the energy release rate. Subsequently, the energy criterion of macrofracture propagation can be based on the conventional J-integral and is not affected by the strong moment stress singularity.

View correction statement:
Erratum

Additional information

Funding

The authors acknowledge support from the ARC Linkage Project Grant [grant number LP120100299]; AWE Ltd; Norwest Energy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.