185
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Origin of excess low-energy vibrations in densified B2O3 glasses

, , , &
Pages 2596-2606 | Received 02 Feb 2015, Accepted 25 Jun 2015, Published online: 27 Jul 2015
 

Abstract

Low-temperature experiments of Raman scattering and heat capacity have been performed in a B2O3 glass, pressure quenched from 1200 °C in order to obtain the density as largest as possible (ρ = 2373 kg/m3). When compared to those of compacted B2O3 glasses having smaller density, the Raman spectrum of this glass exhibits a strong decrease of the intensities of the Boson peak and the band at 808 cm−1, both the features being determined by the decrease of the boroxol ring population. Moreover, the Boson peak exhibits a large shift to 68 cm−1 (from 26 cm−1 observed in normal vitreous B2O3). The high atomic packing of the glassy network also leads to a marked decrease of the excess heat capacity over the Debye T3-behaviour characterizing the crystal. The density g(ν) of low-frequency vibrational states has been assessed by using the low-frequency Raman intensity to determine the temperature dependence of the low-temperature heat capacity. The observations performed over a wide range of glass densities are compared to the predictions of theoretical models and computer simulations explaining the nature of the Boson peak. Consistency with the results of a simulation study concerning the vibrations of jammed particles leads to evaluate a nanometre length scale which suggests the existence of poorly packed domains formed from several connected boroxols. These soft regions are believed to be the main source of low-frequency optic-like vibrations giving rise to the Boson peak.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.