368
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

T-ZrS nanoribbons: structure and electronic properties

, , , &
Pages 2074-2087 | Received 25 Jan 2016, Accepted 06 May 2016, Published online: 27 May 2016
 

Abstract

Recently, monolayer and few layers of trigonal phases of zirconium disulfide (T-ZrS) sheets were obtained experimentally on hexagonal boron nitride using an evaporation technique. On the basis of these previous results, we report the structural and electronic properties of armchair nanoribbons (ANRs) and zigzag nanoribbons (ZNRs) of T-ZrS by means of density functional theory. According to our results, both ANRs and ZNRs are nonmagnetic semiconductors similar to a two-dimensional T-ZrS monolayer. The semiconducting character is not altered by termination of the edge atoms with hydrogen. The band gaps are associated with the ribbon widths and edge structures. The band gaps of bare and H-terminated ANR-ZrS decrease exponentially, whereas the band gaps of ultra-narrow zigzag nanoribbons oscillate slightly with increasing ribbon width. Although the band gaps of bare ANRs approach that of 2D T-ZrS, other structures have larger band gaps than the monolayer with increasing ribbon width. The cohesive and formation energies of bare ANRs and ZNRs converge rapidly to that of the 2D T-ZrS structure with increasing ribbon width.

Acknowledgements

The computing resources used in this work were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (Tr-Grid e-Infrastructure).

Notes

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.