163
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Temperature-dependent model for hole transport mechanism in a poly(1.8-diaminocarbazole)/Si structure

, &
Pages 2600-2614 | Received 21 Sep 2015, Accepted 04 Jul 2016, Published online: 28 Jul 2016
 

Abstract

To investigate the conduction mechanism in an organic/inorganic heterojunction, poly(1.8-diaminocarbazole) (PDACz) on a p-type silicon substrate in a sandwich configuration were contacted with Al electrodes and temperature-dependent current–voltage measurements performed in the temperature range 280–380 K. It was found that the barrier height decreased and the ideality factor increased with decreasing temperature. Temperature and bias-dependent transition regimes were observed. These anomalies are explained by further analysis of the low- and high-field regions of the current–voltage curves. The trap density Hb and the characteristic trap energy Et were found to be 1.85 × 1017 cm−3 and 25 meV, respectively. Assuming that the trapped carrier density pt is higher than free-carrier density p, it is concluded that hole transport is dominated by space-charge-limited currents.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.