473
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Climb via vacancy diffusion of edge dislocations in 2D dislocation microstructures

&
Pages 2779-2799 | Received 24 Nov 2015, Accepted 13 Jul 2016, Published online: 05 Aug 2016
 

Abstract

The prevention of strength degradation of components is one of the great challenges in solid mechanics. In particular, at high temperatures material may deform even at low stresses, a deformation mode known as deformation creep. One of the microstructural mechanisms that governs deformation creep is dislocation motion due to the absorption or emission of vacancies, which results in motion perpendicular to the glide plane, called dislocation climb. However, the importance of the dislocation network for the deformation creep remains far from being understood. In this study, a climb model that accounts for the dislocation network is developed, by solving the diffusion equation for vacancies in a region with a general dislocation distribution. The definition of the sink strength is extended, to account for the contributions of neighbouring dislocations to the climb rate. The model is then applied to dislocation dipoles and dislocation pile-ups, which are dense dislocation structures and it is found that the sink strength of dislocations in a pile-up is reduced since the vacancy field is distributed between the dislocations. Finally, the importance of the results for modelling deformation creep is discussed.

Notes

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was partially supported by the Israel Science Foundation [grant number 1656/12].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.