589
Views
15
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Fracking and labquakes

, , &
Pages 3686-3696 | Received 08 May 2015, Accepted 06 Sep 2016, Published online: 22 Sep 2016
 

Abstract

Local fracture events (or labquakes) during compression of shale rocks have been studied by acoustic emission. They are assumed to simulate quakes induced by hydraulic fracturing (fracking) or other water injection activities. Results are compared with those obtained during compression of porous Vycor glass, which are known to display statistical features very similar to those characterising natural earthquakes. Our acoustic emission results show that labquake energies are power law distributed, which is consistent with recent statistical analysis of fracking-/water injection-induced quakes. The data confirm a Gutenberg–Richter behaviour with exponents larger than the exponents characterising the energy distribution of natural earthquakes. In contrast to natural earthquakes, labquakes in shales do not show time correlations, which indicates that the probability of aftershocks is smaller than in the natural scenario (e.g. during Californian earthquakes).

Acknowledgments

We are grateful to Ian Bradford (Schlumberger) for providing the shale samples.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.