337
Views
9
CrossRef citations to date
0
Altmetric
NTMRD V

The interaction between Lateral size effect and grain size when scratching polycrystalline copper using a Berkovich indenter

, , &
Pages 3414-3429 | Received 05 May 2016, Accepted 20 Sep 2016, Published online: 05 Oct 2016
 

Abstract

It has been reported previously that, for single and polycrystalline copper (fcc), the indentation size effect and the grain size effect (GSE) can be combined in a single length-scale-dependent deformation mechanism linked to a characteristic length-scale calculable by a dislocation-slip-distance approach (X. D. Hou and N. M. Jennett, ‘Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects,’ Acta Mater., Vol. 60, pp. 4128–4135, 2012). Recently, we identified a ‘lateral size effect (LSE)’ in scratch hardness measurements in single crystal copper, where the scratch hardness increases when the scratch size is reduced (A. Kareer, X. D. Hou, N. M. Jennett and S. V. Hainsworth ‘The existence of a lateral size effect and the relationship between indentation and scratch hardness’ Philos. Mag. published online 24 March 2016). This paper investigates the effect of grain size on the scratch hardness of polycrystalline copper with average grain sizes between 1.2 and 44.4 μm, when using a Berkovich indenter. Exactly the same samples are used as in the indentation investigation by Hou et al. (‘Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects,’ Acta Mater., Vol. 60, pp. 4128–4135, 2012). It is shown that, not only does the scratch hardness increase with decreasing grain size, but that the GSE and LSE combine in reciprocal length (as found previously for indentation) rather than as a superposition of individual stresses. Applying the same (as indentation) dislocation-slip-distance-based size effect model to scratch hardness yielded a good fit to the experimental data, strongly indicating that it is the slip-distance-like combined length-scale that determines scratch hardness. A comparison of the fit parameters obtained by indentation and scratch on the same samples is made and some distinct differences are identified. The most striking difference is that scratch hardness is over four times more sensitive to grain size than is indentation hardness.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.