251
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The Manning factor for direct exchange and ring diffusion mechanisms

, , , , &
Pages 230-247 | Received 15 Apr 2016, Accepted 25 Oct 2016, Published online: 14 Nov 2016
 

Abstract

In this paper, we consider lattice-based diffusion kinetics for the direct exchange and ring mechanisms as possible proxy diffusion mechanisms for diffusion in liquid alloys. For these mechanisms, we assessed the Manning factor that arises from the Darken–Manning relation relating the interdiffusion coefficient and tracer diffusion coefficients and which can be obtained experimentally. The maximum values of the Manning factor for these two mechanisms occur when the exchange only takes place between the atoms of different type but not between the atoms of the same type. These values have strong composition dependence and reach a value of 2 (ignoring tracer correlation factors) for the direct exchange mechanism at equal compositions of the two components in binary alloys. But for the three atom ring mechanism, these values as a function of composition have a much more complicated form that sits below the direct exchange mechanism for compositions between 10 and 90%. When all exchanges (allowed by a mechanism) occur with approximately the same probability, then the Manning factor is about unity for all compositions.

Acknowledgements

The authors are grateful to Dr E. Sondermann for beneficial and stimulating discussions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.