165
Views
1
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Photovoltaic effect in unipolar multivalley semiconductors

, &
Pages 683-692 | Received 14 Sep 2016, Accepted 15 Dec 2016, Published online: 04 Jan 2017
 

Abstract

The theory of the nonequilibrium charge carrier transport in unipolar multivalley semiconductors is developed. It is shown that the diffusion of photoexcited nonequilibrium heavy and light electrons in multivalley semiconductors is a correlated process, like the ambipolar diffusion in the case of the electron-hole plasma. The light-induced intervalley transitions, resulting in the imbalance between the subsystems of the light and heavy electrons, give rise to the electromotive force (emf) through the mechanism of the Dember photovoltaic effect. The value of the emf occurring in the ‘metal-semiconductor-metal’ structure is calculated in the linear approximation in terms of the light intensity as a small parameter. It is shown that the emf is determined by the conductivity of heavy and light electron subsystems, as well as by the surface conductivity of the metal-semiconductor interface.

Notes

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author (Yu. G. G.) was partially supported by Project CONACyT – Mexico: Transporte Mono- y Bipolar en Estructuras Semiconductoras [219589].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.