348
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Athermal migration of vacancies in iron and copper induced by electron irradiation

, , , &
Pages 638-656 | Received 18 Oct 2016, Accepted 19 Dec 2016, Published online: 05 Jan 2017
 

Abstract

Irradiation with high-energy particles induces athermal migration of point defects, which affects defect reactions at low temperatures where thermal migration is negligible. We conducted molecular dynamics simulations of vacancy migration in iron and copper driven by recoil energies under electron irradiation in a high-voltage electron microscope. Minimum kinetic energy required for migration was about 0.8 and 1.0 eV in iron and copper at 20 K, which was slightly higher than the activation energy for vacancy migration. Around the minimum energy, the migration succeeded only when a first nearest neighbour (1NN) atom received the kinetic energy towards the vacancy. The migration was induced by higher kinetic energies even with larger deflection angles. Above several electron-volts and a few 10s of electron-volts, vacancies migrated directly to 2NN and 3NN sites, respectively. Vacancy migration had complicated directional dependence at higher kinetic energies through multiple collisions and replacement of atoms. The probability of vacancy migration increased with the kinetic energy and remained around 0.3–0.5 jumps per recoil event for 20–100 eV. At higher temperatures, thermal energies slightly increased the probability for kinetic energies less than 1.5 eV. The cross section of vacancy migration was 3040 and 2940 barns for 1NN atoms in iron and copper under irradiation with 1.25 MV electrons at 20 K: the previous result was overestimated by about five times.

Acknowledgements

This work, performed at the Center for Computational Materials Science, Institute for Materials Research, Tohoku University [Proposal number 15S0407] and [Proposal number 16S0402], was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI [grant number 15K06663].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.