114
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Atomistic origin of the thermodynamic activation energy for self-diffusion and order-order relaxation in intermetallic compounds II: Monte Carlo simulation of B2-ordering binaries

, , , , &
Pages 1375-1397 | Received 27 Aug 2016, Accepted 13 Feb 2017, Published online: 16 Mar 2017
 

Abstract

The validity of previously derived formulae expressing the activation energies for self-diffusion and ‘order–order’ relaxations in intermetallics in terms of the activation energies of more elementary processes involved in the phenomena is tested by simulation of particular binary systems. The simulation results were in good agreement with the tested formulae. It was shown that the relationship between the activation energies observed in triple-defect B2-ordering binaries, where the value of the activation energy for order–order relaxations is substantially lower than that for self-diffusion, does not hold in the case of non-triple-defect binaries. Using the tested formulae, the origin of the effect was elucidated and attributed to the atomistic origin of the tendency for triple-defect disordering.

Acknowledgement

Access to the computation facilities at the ACK Cyfronet AGH, Krakow (supercomputer Prometheus) is greatly appreciated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.