250
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Observations of the stress developed in Si inclusions following plastic flow in the matrix of an Al–Si–Mg alloy

, , , , &
Pages 1398-1417 | Received 04 Aug 2016, Accepted 14 Feb 2017, Published online: 10 Apr 2017
 

Abstract

Measurements are made of the stress developed in near-spherical elastic inclusions in an elastic plastic matrix under both tension and compression loading. Two experimental conditions are reported. The first case is where no thermal mismatch exists between the inclusions and the matrix, so that the stress in the inclusion is purely a result of the misfit in the elastic moduli and of the distortion of the plastic slip-line field around the inclusion. The observations are believed to be the first such and are in qualitative agreement with finite-element modelling for idealised inclusion distributions. The second case is the more usual one where a thermal misfit stress exists and observations are reported of the stress relief effects caused by the interaction of the plasticity-induced stress with the thermal and elastic misfit stresses.

Acknowledgements

We are grateful to the CCLRC for the provision of beam time at the ISIS neutron facility and to General Motors R&D for making the cast plates. Professor Phillip Withers made helpful comments on the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.