259
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Bounds on size-dependent behaviour of composites

, & ORCID Icon
Pages 437-463 | Received 03 Aug 2017, Accepted 21 Nov 2017, Published online: 04 Dec 2017
 

Abstract

Computational homogenisation is a powerful strategy to predict the effective behaviour of heterogeneous materials. While computational homogenisation cannot exactly compute the effective parameters, it can provide bounds on the overall material response. Thus, central to computational homogenisation is the existence of bounds. Classical first-order computational homogenisation cannot capture size effects. Recently, it has been shown that size effects can be retrieved via accounting for elastic coherent interfaces in the microstructure. The primary objective of this contribution is to present a systematic study to attain computational bounds on the size-dependent response of composites. We show rigorously that interface-enhanced computational homogenisation introduces two relative length scales into the problem and investigate the interplay between them. To enforce the equivalence of the virtual power between the scales, a generalised version of the Hill–Mandel condition is employed, and accordingly, suitable boundary conditions are derived. Macroscopic quantities are related to their microscopic counterparts via extended average theorems. Periodic boundary conditions provide an effective behaviour bounded by traction and displacement boundary conditions. Apart from the bounds due to boundary conditions for a given size, the size-dependent response of a composite is bounded, too. The lower bound coincides with that of a composite with no interface. Surprisingly, there also exists an upper bound on the size-dependent response beyond which the expected ‘smaller is stronger’ trend is no longer observed. Finally, we show an excellent agreement between our numerical results and the corresponding analytical solution for linear isotropic materials which highlights the accuracy and broad applicability of the presented scheme.

Notes

No potential conflict of interest was reported by the authors.

Additional information

Funding

The support of this work by the Cluster of Excellence ‘Engineering of Advanced Materials’ at the University of Erlangen–Nuremberg, funded by the DFG within the framework of its ‘Excellence Initiative’, is greatly appreciated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.