558
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A common mechanism for evolution of single shear bands in large-strain deformation of metals

, , &
Pages 3267-3299 | Received 06 Jun 2018, Accepted 12 Sep 2018, Published online: 28 Sep 2018
 

ABSTRACT

Shear banding, a type of inhomogeneous plastic flow involving very large local strains, occurs in a variety of material systems. We study dynamics of evolution of single shear bands at strain rates of up to per second in three different polycrystalline metal systems, using a special shear deformation framework and a micro-marker technique calibrated to track localised deformation fields at micrometer resolution. Once a band is nucleated as a weak interface, localised plastic flow occurs via Bingham-type viscous sliding between material segments on either side of the interface. As a result, the evolution and magnitude of strains and material displacements in the band vicinity are well-described by a model based on momentum diffusion. The viscosity at the band interface is very small, only a few mPa·sec, and is comparable to those of liquid metals at their melting point. Based on analysis of various contributions to band viscosity at the microscopic level, a plausible explanation based on phonon drag on dislocation motion is presented for the small viscosity. The accuracy of predictions made by the momentum diffusion model for different materials and deformation rates suggests that once nucleated, a shear band evolves by a common mechanism that is relatively insensitive to microstructure details.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

DS would like to acknowledge the faculty start-up support from the Department of Industrial and Systems Engineering at Texas A&M University and Texas A&M Engineering Experiment Station (TEES). SC would like to acknowledge support from NSF grant DMR 1610094 and US Army Research Office Award W911NF-15-1-0591.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.