199
Views
3
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Magnetic orders and electronic behaviours of new chalcogenides Cu3MnCh4 (Ch = S, Se and Te): An ab initio study

Pages 1941-1955 | Received 17 Oct 2018, Accepted 20 Mar 2019, Published online: 17 Apr 2019
 

ABSTRACT

The ternary copper-based chalcogenides Cu3MnCh4 (Ch = S, Se and Te), which have simple cubic (SC) crystal structure and conform to P4¯3m space group with 215 space number, have been investigated by spin-polarised Generalised Gradient Approximation (GGA) in the framework of Density Functional Theory (DFT). First, all systems have been considered in ferromagnetic (FM) and three different type antiferromagnetic (AFM) orders which are A-type (A-AFM), G-type (G-AFM) and C-type (C-AFM) to investigate most stable magnetic phase for each system. The energetically favoured magnetic phase is A-type AFM for Cu3MnS4 and Cu3MnSe4 compounds, while Cu3MnTe4 compound has FM ground state. The electronic band structures of these systems have been investigated, after the well-optimised structural parameters in their stable magnetic phase have been obtained. The calculated spin-polarised electronic band structure of FM Cu3MnTe4 compound exhibits half-metallic behaviour with a band gap in minority spin channel (Eg = 0.99 eV) while metallic band structure is observed for majority spin. The calculated electronic band structures in A-type AFM phase for Cu3MnS4 and Cu3MnSe4 systems show that Cu3MnS4 compound has semiconducting behaviour with a small band gap (Eg = 0.21 eV) whereas Cu3MnSe4 compound has metallic character. The calculated negative formation enthalpies indicate the thermodynamic stability and structural synthesisability of these compounds.

Acknowledgments

This research was supported in part by TÜBİTAK (The Scientific & Technological Research Council of Turkey) through TR-Grid e-Infrastructure Project, part of the calculations has been carried out at ULAKBİM Computer Center.

Disclosure statement

No potential conflict of interest was reported by the author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.