373
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Role of axial twin boundaries on deformation mechanisms in Cu nanopillars

ORCID Icon, ORCID Icon, , &
Pages 529-550 | Received 20 May 2019, Accepted 31 Oct 2019, Published online: 01 Dec 2019
 

ABSTRACT

In recent years, twinned nanopillars have attracted tremendous attention for research due to their superior mechanical properties. However, most of the studies were focused on nanopillars with twin boundaries (TBs) perpendicular to loading direction. Nanopillars with TBs parallel to loading direction have received minimal interest. In this backdrop, the present study is aimed at understanding the role of axial TBs on strength and deformation behaviour of Cu nanopillars using atomistic simulations. Tensile and compression tests have been performed on <112> nanopillars with and without TBs. Twinned nanopillars with twin boundary spacing in the range 1.6–5 nm were considered. The results indicate that, under both tension and compression, yield strength increases with decreasing twin boundary spacing and is always higher than that of perfect nanopillars. Under compression, the deformation in <112> perfect as well as twinned nanopillars proceeds by the slip of extended dislocations. In twinned nanopillars, an extensive cross-slip by way of Friedel-Escaig and Fleischer mechanisms has been observed in compression. On the other hand, under tensile loading, the deformation in perfect nanopillars occurs by partial slip/twinning, while in twinned nanopillars, it proceeds by the slip of extended dislocations. This extended dislocation activity is facilitated by stair-rod formation and its dissociation on the twin boundary. Similar to compressive loading, the extended dislocations under tensile loading also exhibit cross-slip activity in twinned nanopillars. However, this cross-slip activity occurs only through Fleischer mechanism and no Friedel-Escaig mechanism of cross-slip has been observed under tensile loading.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.