160
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Extended theoretical analysis of crystallisation kinetics being studied by in situ XRD

Pages 713-727 | Received 02 Sep 2019, Accepted 02 Dec 2019, Published online: 20 Dec 2019
 

ABSTRACT

Theoretical simulations were used to study the consequences of simplifying the replacement of the step-wise in situ X-ray diffraction (XRD) temperature programme by simple linear heating (at corresponding effective heating rate) during the kinetic calculations based on the multivariate kinetic analysis. The simulations were performed for a large variety of step-wise non-isothermal in situ XRD temperature programmes, covering most practically used combinations of the temperature step magnitude ΔT, rate of heating, and duration of the isothermal hold Δt. To achieve the universal interpretation of the obtained results, the behaviour of the majority of crystallisation processes with commonly encountered kinetic profiles was explored: simulations were performed for single-process transformations with highly negative, symmetric and highly positive asymmetries; complex multi-process reactions with different degrees of sub-process overlaps and variable activation energy were analysed. It was found that the asymmetry and shape of the crystallisation peaks do not significantly influence the level of distortion of kinetic parameters. The main factors that increase the errors of in situ XRD kinetic evaluations are high Δt, high ΔT and high activation energy (with the latter two being most important). Findings were discussed for the accuracy of the corresponding kinetic predictions. Generalisation of the present conclusions towards their universal utilisation for optimisation of in situ XRD experiments was suggested.

Disclosure statement

No potential conflict of interest was reported by the author.

Additional information

Funding

This work was supported by the Czech Science Foundation [Grantová Agentura České Republiky] under project No. 17-11753S.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.