511
Views
2
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

First-principles calculations of the monoclinic transition-metal doped NaMnO2 cathode material

Pages 917-926 | Received 09 Jul 2019, Accepted 03 Jan 2020, Published online: 16 Jan 2020
 

ABSTRACT

Using spin-polarised generalised gradient approximation (GGA + U), I successfully investigate the electronic properties of the monoclinic NaMnO2 doped with Cr, Fe and V atom to enhance the electrochemical performance. The expansion of volumes is induced by the dopants. The lowest conduction band and highest valence band are mostly from d orbital of Mn atom and transition-metal dopants which are responsible for the electronic conductivity. Na(Mn, Fe)O2 is a semiconductor with the reduced band gap. Cr and V doping in NaMnO2 compound reveal the half-metallic performance. The enhancement of the insertion potentials is induced by transition-metal dopants. The electronic conductivity of NaMnO2 cathode material is improved by Cr-doping scheme. Finally, this research presents the new horizons for the expenditure of transition-metal doping for designing and improving the NaMnO2 cathode materials in Na-ion rechargeable batteries.

Acknowledgement

The author would like to acknowledge the support from Department of Physics, Faculty of Science, Ubon Ratchathani University, Thailand.

Disclosure statement

No potential conflict of interest was reported by the author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.