383
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

An advanced dislocation density-based approach to model the tensile flow behaviour of a 64.7Ni–31.96Cu alloy

, , , & ORCID Icon
Pages 1481-1504 | Received 08 Oct 2021, Accepted 17 Mar 2022, Published online: 04 Apr 2022
 

ABSTRACT

Modelling the flow behaviour enables to understand the underlying deformation mechanisms underneath the various conditions imposed during the thermo-mechanical processing. Thus, herein flow stress response of 64.7Ni–31.96Cu alloy with different grain size is modelled at varying temperatures and strain rates, employing a dislocation density reliant physical model. The model takes account of immobile dislocations and assimilates strain hardening effect, Hall–Petch effect and the short-range interactions. Furthermore, the model addresses the static and dynamic recovery as key aspects during plastic deformation. In this advanced approach, the influence of twin boundaries has been incorporated and modelled flow curves show reasonable agreement with the experimental ones. The effect of different grain sizes and connected changes in the amount of twins on the flow stress can be obtained from the model. Predicted final dislocation densities and cell size are in the range of 6.91–10.26 × 1014 m−2 and 0.59–0.80 μm, respectively, for varying test conditions. It was observed that there is a sharp increase in dislocation density at the commencement of deformation. Concomitantly, hardening is also more profound during initial deformation. The investigation also revealed that excluding the twin boundaries in this physical-based approach would lead to underestimation of flow stress. This model also makes it possible to evaluate the relative contributions from different strengthening mechanisms.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The research work was carried out in the framework of projects DST/INSPIRE/04/2018/003390 and DST/INT/BMWF/Austria/P-11/2020. The authors thank OEAD Austria and DST India for their financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.