240
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Utilising physics-informed neural networks for optimisation of diffusion coefficients in pseudo-binary diffusion couples

, ORCID Icon, , & ORCID Icon
Pages 1717-1737 | Received 16 Oct 2022, Accepted 30 May 2023, Published online: 25 Jul 2023
 

ABSTRACT

We propose a numerical inverse method based on physics-informed neural networks (PINN) for calculating composition-dependent diffusion coefficients in pseudo-binary (PB) diffusion couples in multicomponent alloys. Traditional methods rely solely on experimental diffusion profiles as design targets, which can lead to unreliable estimates. In contrast, PINN uses a combination of available data and physics-based constraints to obtain optimised design parameters and exact solutions for constrained governing differential equations. The constraints in PINN include governing partial differential equations, initial and boundary conditions, and any other equality/inequality relations obeyed by physical parameters. Our study shows the necessity of experimentally estimated intrinsic diffusion coefficients for the prediction of reliable composition-dependent mobility data. In the absence of such data, different combinations of unknown intrinsic diffusion coefficients can also produce reasonable approximations of diffusion profiles and interdiffusion coefficients while wrongly predicting more fundamental quantities (i.e. intrinsic diffusivities). Our method utilises PINN to simultaneously obtain optimised design parameters (diffusion coefficients) and exact solutions for governing diffusion equations. The implementation of PINN uses experimentally estimated diffusion coefficients obtained by the PB diffusion couple method, in addition to diffusion profiles, as design targets. The method is extended to non-ideal PB diffusion profiles, such as conventional diffusion couples in which all the components develop diffusion profiles, by incorporating additional constraints such as zero composition gradient of certain component(s) and experimentally estimated interdiffusion coefficients at extrema in the composition profiles. PINN is found to be a promising approach for obtaining reliable estimates of diffusion coefficients in multicomponent alloys.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

We acknowledge the financial support from SERB, India [project No. CRG/2021/001842].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.