203
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Energy matrices analysis of hybrid PVT greenhouse dryer by considering various silicon and non-silicon PV modules

, , &
Pages 336-348 | Received 10 Mar 2011, Accepted 17 Nov 2012, Published online: 12 Mar 2013
 

Abstract

In this paper, a study was carried out to evaluate the annual thermal and exergy performance of hybrid photovoltaic-thermal greenhouse dryer, located at IIT Delhi, India by considering various silicon and non-silicon-based photovoltaic (PV) modules namely mono crystalline silicon (c-Si), multi crystalline silicon (mc-Si), nano crystalline silicon, amorphous silicon, Cadmium Telluride and Copper Indium Gallium Selenide. The annual net electrical energy savings for these modules for a, b, c and d type weather conditions for New Delhi has been calculated. Embodied energy and annual energy outputs have been used for evaluation of energy matrices such as energy payback time, electricity production factor (EPF) and life cycle conversion efficiency (LCCE) of the system. The results also showed that EPF, LCCE, CO 2 mitigations and carbon credits earned, were maximum for c-Si-type PV module, and hence it was recommended for the proposed system.

Acknowledgements

The authors are grateful to the Ministry of Food Processing (MFPI) New Delhi, India for providing financial help to carry out the above experiment. Our sincere thanks to the colleagues and the staff members of IIT, Delhi for their active cooperation during experimental work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.