387
Views
0
CrossRef citations to date
0
Altmetric
Review

Analyzing the glial proteome in Alzheimer’s disease

, ORCID Icon, & ORCID Icon
Pages 197-209 | Received 09 Jun 2023, Accepted 18 Aug 2023, Published online: 22 Sep 2023
 

ABSTRACT

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and changes in behavior. Accumulating evidence indicates that dysfunction of glial cells, including astrocytes, microglia, and oligodendrocytes, may contribute to the development and progression of AD. Large-scale analysis of glial proteins sheds light on their roles in cellular processes and diseases. In AD, glial proteomics has been utilized to understand glia-based pathophysiology and identify potential biomarkers and therapeutic targets.

Area covered

In this review, we provide an updated overview of proteomic analysis of glia in the context of AD. Additionally, we discuss current challenges in the field, involving glial complexity and heterogeneity, and describe some cutting-edge proteomic technologies to address them.

Expert opinion

Unbiased comprehensive analysis of glial proteomes aids our understanding of the molecular and cellular mechanisms of AD pathogenesis. These investigations highlight the crucial role of glial cells and provide novel insights into the mechanisms of AD pathology. A deeper understanding of the AD-related glial proteome could offer a repertoire of potential biomarkers and therapeutics. Further technical advancement of glial proteomics will enable us to identify proteins within individual cells and specific cell types, thus significantly enhancing our comprehension of AD pathogenesis.

Article highlights

  • Glial cells in Alzheimer’s disease (AD) undergo profound molecular and functional alterations, offering vast possibilities for biomarker identification and therapeutic breakthroughs.

  • Technological advancements in the proteomic field have facilitated the identification of distinct proteomic changes specific to individual glial cell types in AD.

  • Identifying and characterizing the glia-specific proteomic alterations in AD holds potential for both disease diagnosis and treatment.

  • Further refinement of highly sensitive proteomic techniques is imperative to unlock glia-based biomarkers that can enable timely diagnosis and treatment of AD.

Declaration of interests

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Acknowledgments

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication. J-HK, RA, and KS formulated the focus of this review. RA and W-HL conducted the literature review and participated in the discussion. J-HK and KS wrote the manuscript. W-HL and KS revised and critically reviewed.

Additional information

Funding

This work was supported by the Basic Science Research Program through the National Research Foundation (NRF), which is funded by the Korean government (MSIP) (NRF-2017R1A5A2015391, 2020M3E5D9079764).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 641.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.