102
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Solubilization and Plant Uptake of Zinc and Cadmium from Soils Treated with Elemental Sulfur

, , &
Pages 381-400 | Published online: 23 Aug 2006
 

ABSTRACT

In growth chamber experiments we studied the potential use of elemental sulfur (S8) as an acidifying agent to enhance the uptake of Cd and Zn from three different polluted soils by candidate phytoremediation plants (Brassica juncea, Helianthus annuus, Salix viminalis). Two of the three soils were calcareous, the other slightly acidic. One of the calcareous soils had been contaminated by dust emissions from a nearby brass smelter. The pollution of the other two soils had resulted from sewage sludge applications.

Sulfur was added to soils in quantities of 20 to 400 mmol sulfur kg-1 soil. Plants were grown under fluorescent light in 1.5 l ($OS 13 cm) pots for 28 d.

Within 700 h soil pH decreased significantly in all soils, depending on S8 dosage. In the acid soil, pH decreased from pH 6.5 to about 4 at the highest treatment level, while pH in one of the calcareous soils dropped even below pH 4. The effect was smaller in the second calcareous soil.

NaNO3-extractable Cd and Zn increased up to 26-and 13-fold, respectively, in the acid soil, while in the calcareous soils, maximum increases were 9-and 11-fold, respectively.

Increased NaNO3-extractable concentrations translated well into shoot concentrations (dry matter) in plants. Shoot Zn concentrations in H. annuus, for example, increased from 930 in the controls to 4300 mg kg-1 in the highest S8 treatment. However, effects observed in the plants were generally smaller than in the soils. In addition, in some variants growth was negatively affected, resulting in reduced metal removal from the soils.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.