106
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A Novel Dual-Compartment, Continuous-Flow Wetland Microcosm to Assess Cis-Dichloroethene Removal from the Rhizosphere

, &
Pages 455-471 | Published online: 20 Nov 2008
 

Abstract

The anaerobic biodegradation of tetrachloroethene commonly results in the accumulation of chlorinated intermediates such as cis-1,2-dichloroethene (cDCE). Frequently, groundwater contaminated with chlorinated ethenes discharges to natural wetlands. The goal of this study was to quantitatively evaluate the effects of wetland plants and microorganisms on the fate of cDCE in the wetland rhizosphere. To accomplish this goal, a novel dual-compartment wetland microcosm was designed. A Phragmites australis individual was maintained in the microcosm, which was operated with continuous flows of air and mineral medium through the foliar and rhizosphere compartments, respectively, to incorporate mass transfer/transport processes that are important in natural wetlands and allow steady-state assessment of changes in dissolved O2 and cDCE or [1,2–14C]cDCE levels. Substantial amounts of [14C]cDCE were phytovolatilized through a healthy P. australis individual to the foliar chamber. Rhizodegradation by native microorganisms associated with P. australis roots also converted substantial amounts of [14C]cDCE to 14C-labeled CO2 and non-volatile compounds, presumably through cometabolic reactions that could be enhanced by the release of O2 and exudates by P. australis. These results suggest that, in some cases, the intrinsic capacity of native wetland plants and microorganisms to remove cDCE from the rhizosphere may be substantial.

ACKNOWLEDGEMENTS

This work was supported, in part, by a Maryland Agricultural Experiment Station research grant and a Larson Aquatic Research Support (LARS) Scholarship awarded to Ilisa Tawney by the American Water Works Association. The authors would like to thank Joel G. Burken (University of Missouri-Rolla) and Eric A. Seagren (University of Maryland) for providing useful information on bioreactor design and David L. Freedman (Clemson University) for helpful comments on the manuscript. The assistance of Gary Seibel (University of Maryland) in implementing various aspects of the microcosm design is also gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.