284
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Indole-3-Acetic Acid (IAA), a Plant Hormone, on the Ryegrass Yield and the Removal of Fluoranthene from Soil

, , , , , , & show all
Pages 422-428 | Published online: 13 Dec 2014
 

Abstract

A soil culture experiment was conducted to determine whether a plant hormone, indole-3-acetic acid (IAA), could influence fluoranthene (Flu) removal from soil. Four treatments were utilized: (i) unplanted soil (CK), (ii) soil planted with ryegrass (P), (iii) soil planted with ryegrass and treated with 0.24 mg kg−1 IAA (P+0.24), (iv) soil planted with ryegrass and treated with 2.4 mg kg−1 IAA (P+2.4). The Flu initial concentration was 200 mg kg−1. After 3 months, the percentage of Flu removal and plant root biomass were significantly increased under the P+2.4 and the removal rate was 35.68%. The total Flu content in plants was higher than that in the other treatments. The Flu concentration was significantly increased in the shoots, but not significantly altered in the roots. The highest translocation factor was observed in the P+2.4. Increase in number of bacteria, actinomycetes and fungi were observed in the planted treatments, and the amount of fungi was significantly increased in P+2.4. Flu removal was related to the Flu in ryegrass, and was insignificantly correlated with the stimulation of soil microflora, which suggesting that IAA may work mainly on improving plant growth, the Flu uptake, and eventually leading to enhanced remediation of Flu polluted soil.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.