267
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Different Amendments on Growing of Canna indica L. Inoculated with AMF on Mining Substrate

, , , , , & show all
Pages 503-513 | Published online: 13 Dec 2014
 

Abstract

Canna indica L. (CiL) was used here in phytoremediation of mining soils. Our work evaluated the effect of AMF (i) on the growth and (ii) on the uptake of heavy metals (HM). The tests were conducted in the greenhouse on mining substrates collected from the Kettara mine (Morocco). The mine soil was amended by different proportions of agricultural soil and compost and then inoculated with two isolates of AMF (IN1) and (IN2) of different origins. After six months of culture, the results show that on mining soils (100%) only AMF (IN2) was able to colonize the roots of CiL with a frequency of 40 ± 7% and an intensity of 6.5 ± 1.5%. Also, the lowest values of shoot and root dry biomass are obtained on these mining soils with respectively 0.30 g and 0.27 g. In contrast, the accumulation of HM was higher and reached more than 50% of that contained in the mining soils, the highest values with 138 mg kg−1 Cu2+, Zn2+ 270 mg kg−1 and 1.38 mg kg−1 Cd was recorded. These results indicate that the colonization of CiL roots by AMF (IN2) could significantly improve its potential to be used in phytoremediation of polluted soil.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.