203
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Potential of Pteris vittata to Remove Tetracycline Antibiotics from Aquatic Media

, , &
Pages 895-899 | Published online: 07 Jul 2015
 

Abstract

The role of combined arsenic and antibiotics pollution in the environment has recently gained more attention. In this study, a new approach to eliminate tetracycline antibiotics (TCs) from water, via the fern species Pteris vittata (L.), an arsenic hyperaccumulator, was investigated. The encouraging results showed that more than half of the TCs could be removed from the water solution (with the starting concentration of TCs about 1.0 mg kg−1 respectively) after one day of treatment. No TCs (less than 0.01 mg kg−1) were detected in the solution after five days of treatment. The results showed that Pteris vittata has high ability to eliminate TCs, which makes it suitable for practical application. Further research found that TCs concentrations were very low in both the roots and the pinnae of Pteris vittata, which indicates that accumulation in the fronds is not the main removal mechanism and that degradation in the fronds might be the main cause. Present results provide a feasible method for simultaneous removal of arsenic and TCs from livestock-polluted wastewater. However, more research work should be done before any real-world application is made.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.