329
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Bioremediation of Atmospheric Hydrocarbons via Bacteria Naturally Associated with Leaves of Higher Plants

, , , , , & show all
Pages 1160-1170 | Published online: 14 Sep 2015
 

Abstract

Bacteria associated with leaves of sixteen cultivated and wild plant species from all over Kuwait were analyzed by a culture-independent approach. This technique depended on partial sequencing of 16S rDNA regions in total genomic DNA from the bacterial consortia and comparing the resulting sequences with those in the GenBank database. To release bacterial cells from leaves, tough methods such as sonication co-released too much leaf chloroplasts whose DNA interfered with the bacterial DNA. A more satisfactory bacterial release with a minimum of chloroplast co-release was done by gently rubbing the leaf surfaces with soft tooth brushes in phosphate buffer.

The leaves of all plant species harbored on their surfaces bacterial communities predominated by hydrocarbonoclastic (hydrocarbon-utilizing) bacterial genera. Leaves of 6 representative plants brought about in the laboratory effective removal of volatile hydrocarbons in sealed microcosms. Each individual plant species had a unique bacterial community structure. Collectively, the phyllospheric microflora on the studied plants comprised the genera Flavobacterium, Halomonas, Arthrobacter, Marinobacter, Neisseria, Ralstonia, Ochrobactrum. Exiguobacterium, Planomicrobium, Propionibacterium, Kocuria, Rhodococcus and Stenotrophomonas. This community structure was dramatically different from the structure we determined earlier for the same plants using the culture-dependent approach, although in both cases, hydrocarbonoclastic bacteria were frequent.

Acknowledgments

This work has been supported by Kuwait University, Research Project Grant SL01/07. Thanks are also due to General Facility Projects (SAF), Kuwait University, for providing facilities for DNA sequencing (GS 01/02) and GLC analysis of hydrocarbons (GS02/01), and to Mrs. M-Noelle Alyagout for technical assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.