434
Views
93
CrossRef citations to date
0
Altmetric
Articles

Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum

, , , , , & show all
Pages 662-669 | Published online: 11 May 2017
 

ABSTRACT

In this study, we determined the effect of ethylenediaminetetraacetic acid (EDTA) and calcium (Ca) on arsenic (As) uptake and toxicity to Pisum sativum. Plants were treated with three levels of As (25, 125, and 250 µM) in the presence and absence of three levels of Ca (1, 5, and 10 mM) and EDTA (25, 125, and 250 µM). Exposure to As caused an overproduction of hydrogen peroxide (H2O2) in roots and leaves, which induced lipid peroxidation and decreased pigment contents. Application of both Ca and EDTA significantly reduced As accumulation by pea, Ca being more effective in reducing As accumulation. Both Ca and EDTA enhanced As-induced H2O2 production, but reduced lipid peroxidation. In the case of pigment contents, EDTA significantly reduced pigment contents, whereas Ca significantly enhanced pigment contents compared to As alone. The effect of As treatment in the presence and absence of EDTA and Ca was more pronounced in younger leaves compared to older leaves. The effect of amendments varied greatly with their applied levels, as well as type and age of plant organs. Importantly, due to possible precipitation of Ca-As compounds, the soils with higher levels of Ca ions are likely to be less prone to food chain contamination.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.