197
Views
9
CrossRef citations to date
0
Altmetric
Articles

Equilibrium study of dried orange peel for its efficiency in removal of cupric ions from water

, ORCID Icon, &
Pages 593-598 | Published online: 24 Apr 2018
 

ABSTRACT

Excess of copper ion (>2 mg/L) in water is toxic to human beings and the ecosystem. Various water treatment technologies for copper remediation have been investigated in the past. Along with industrial effluents, Bordeaux mixture is also a noteworthy copper contamination source in the agricultural ecosystem. In our study, the biosorbent efficiency of dried orange peel was investigated through an environment-friendly process for the removal of cupric ions. Effects of pH, adsorbate concentration, adsorbent dosage, and temperature for the removal of Cu (II) were studied. Slightly acidic environment (pH = 6) was found to be optimum for removal of copper. The equilibrium data were well fitted with the Langmuir and Freundlich isotherms. The surface morphology of the adsorbent was studied using scanning electron microscope. Crystalline nonhomogenous surface was observed after copper adsorption. Desorption study indicated that 0.1N H2SO4 is the best eluent for the removal of adsorbed copper from the powdered dried orange peel.

Acknowledgments

This research was supported by the department of PG Studies & Research in Chemistry, and Department of PG Studies & Research in Biotechnology, St. Aloysius College, Mangaluru, Karnataka. We would like to thank Dr. Leo D'Souza SJ for manuscript review.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.