569
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Synergistic plant-microbes interactions in the rhizosphere: a potential headway for the remediation of hydrocarbon polluted soils

, &
Pages 71-83 | Published online: 18 Jan 2019
 

Abstract

Soil pollution is an unavoidable evil; many crude-oil exploring communities have been identified to be the most ecologically impacted regions around the world due to hydrocarbon pollution and their concurrent health risks. Several clean-up technologies have been reported on the removal of hydrocarbons in polluted soils but most of them are either very expensive, require the integration of advanced mechanization and/or cannot be implemented in small scale. However, “Bioremediation” has been reported as an efficient, cost-effective and environment-friendly technology for clean-up of hydrocarbon”s contaminated soils. Here, we suggest the implementation of synergistic mechanism of bioremediation such as the use of rhizosphere mechanism which involves the actions of plant and microorganisms, which involves the exploitation of plant and microorganisms for effective and speedy remediation of hydrocarbon”s contaminated soils. In this mechanism, plant”s action is synergized with the soil microorganisms through the root rhizosphere to promote soil remediation. The microorganisms benefit from the root metabolites (exudates) and the plant in turn benefits from the microbial recycling/solubilizing of mineral nutrients. Harnessing the abilities of plants and microorganisms is a potential headway for cost-effective clean-up of hydrocarbon”s polluted sites; such technology could be very important in countries with great oil producing activities/records over many years but still developing.

Additional information

Funding

This review article is presented in connection with work done under Award of 2015 CIIT-TWAS Sandwich Postgraduate Fellowship FR number: 3240287156. We, therefore, appreciate The World Academy of Science (TWAS) for the advancement of science in developing countries, Strada Costriera 11, 34151 Trieste, Italy, and the COMSATS Institute of Information Technology (CIIT), Pakistan for their technical and financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.